ごみ焼却施設における煙突の耐風設計

Design Method for Wind Load of RC Stacks in Incineration Plant

岡本 紀明 シビルエンジニアリング部 土木建築設計室 飯田 泰彦 シビルエンジニアリング部 土木建築設計室 主査 吉田 勝利 シビルエンジニアリング部 土木建築設計室 統括スタッフ	Noriaki Okamoto, Yasuhiko Iida and Katsutoshi Yoshida
近年,ごみ焼却施設の煙突において,高強度コンク リートの採用などによる軽量化のため,外筒断面の 決定要因は,地震荷重から共振時風荷重に移行する 傾向にある。一方,2000年6月の建築基準法改正に よる仕様規定から性能規定への流れの中で,煙突の 合理的設計として,共振時風荷重を適切に把握する ことがより重要となってきた。本稿では,典型的な 平面形状を持つ煙突の風洞実験結果から,共振時の 風力および風応答特性を明らかにするとともに,共 振時風荷重と地震荷重との比較検討を行う。	In recent years, the wall thickness of RC stack in incinera- tion plants has reduced considerably, mainly because of the adoption of high-strength concrete. As a result, across-wind load became 商tunnel tests for stacks of typical shapes, clarifies dyr load. し,地震荷重との比較検討を行う。

2. ごみ焼却施設の煙突

実験対象煙突の構造諸元をTable1に示す。典型的な平 面形状である正方形,円形,正三角形の3種類を選択した。 平面の大きさは,2本の内筒と点検用階段を包含し,高さ は、比較的よく見られる60m級と、アスペクト比の違いを 考察するために80m級を選択した。60m級の煙突の概要と 諸元を Fig.1 に示す。

1).2)に示されているが,性に応じて複雑に変化するため,風洞実験などでの予測を

3. 動的風力実験

一方,近年では,高強度コンクリー 8.の採用 職機器 軽量

化などのため,RC外筒断面の決定要因**疾戦震荷重為正芸**大学所有のエッフェル型境界層風洞で 振時風荷重に移行する傾向にある。2009年を5月風運算選筆部断面は90cm × 90cm,測定胴長さは 法改正による性能設計への流れの中で1220年のる理的報題模型の縮尺は,Table 1に示す6種類に として、共振時風荷重を適切に把握することがより重要と

なってきた。

必要とする。

Table 1 Typical properties of RC stacks 本報では、ごみ焼却施設のRC煙突における典型的な平

	on ∠_HeightWidth	Ratio of aspect	1st frequency	1st generalized mass	
囬形状において,風力および心合の風洞実験 (を1丁㎏(m) 動態(h)	H/D	$f_o(Hz)$	M(× 10 ³ kg)	
風力特性と風応答特性を明らかにした。また	,実設設に動き	三流だ4支は後期書	陸対離,周辺	環境と調和時に円に	答閙門畀
用できるように,建築物荷重指針	形,正方形, RC外筒に移 規準	三角形などの ^ェ り変わった。タ	平面形状を持 亜突の耐風設	つデザイン重視の 計の考え方は,各	

3.2 風力係数の定義 各風力係数は、計測風力から以下のように算出される⁴⁾。 抗力係数

.....(1)

揚力係数

.....(2)

風方向転倒モーメント係数

.....(3)

風直角方向転倒モーメント係数

.....(4)

ねじれモーメント係数

.....(5)

ただし,

V_H:模型頂部での平均風速 :空気密度

3.3 実験結果

ここでは,高さ30cm模型を中心に,その結果を述べる。 各方向のモーメント係数の風向きによる変化については, 抗力係数と揚力係数に同じ傾向を示したことから考察を省 略する。

3.3.1 風力係数

(1) 正方形断面

Fig.4(a)の最大抗力係数C_{Dmax}は,風向0°で最大となり, 風向20°付近まで減少し,その後再び増加に転じる。変動 抗力係数C_{Drms}は,風向による大きな変化は見られない。平 均抗力係数C_{Dave}もあまり大きな変化はないが,風向45° で最大となる。Fig.4(b)の最大揚力係数C_{Lmax}は,風向5° 付近で最大値となり,風向45°付近で最小となる。平均揚 力係数C_{Lave}は風向15°付近で最大となる。 (2) 正三角形断面

Fig.5(a)の抗力係数は,最大抗力係数C_{Dmax},平均抗力係 数C_{Dave}ともに風向20°付近から上昇し始め,風向60°付 近で最大となる。変動抗力係数C_{Drms}に大きな変化は見ら れない。Fig.5(b)の揚力係数は,最大揚力係数C_{Lmax}P=x_'

5. 設計用等価風力係数

動的風力実験および風応答実験の結果から,文献3)で規 定されている荷重算定法に準拠して,設計用風力係数を定 める。

ゴ槗傅き煙の 蚤Uグ熏 弁篋 頁弇 0椣僥俛 皮く 8 け譱

.....(10)

この式から,

.....(11a)

.....(11b)

つまり,最大揚力係数分布のパラメータは,

.....(12a)

.....(12b)

と得られる。C_{LMAX} およびC_{MLMAX} からC₀および をTable 4 に示す。これは,あくまでも式(10)を仮定した場合の,煙 突が静止しているか,あるいは,応答が小さい場合の便宜 的な分布である。Table 4のように,30cm,40cmでC₀, の値にばらつきが出るが,おおむね,C₀の値は,正方形断 面で3,正三角形断面で1.3,円形断面で0.7程度となって いる。図にすると,いずれも3角形分布に近い結果とな る。

5.2.2 共振時等価風力係数の推定

文献3)では,煙突などの円筒状構造物の渦励振による等 価静的風荷重を,式(13)で与えている。 W, = 0.1 U,²(z/H)C,A......(13)つまり,頂部で最大となり,基部で0となる3角形分布の風荷重を与えている。頂部で応答が大きく,風力が振幅に依存して大きくなるとの仮定である。U

Fig.18 Bending moment distribution of stack for triangle shapes

Fig.19 Bending moment distribution of stack for circle shapes

7. おわりに

ごみ焼却施設における煙突の典型的な平面形状におい て,動的風力実験と風応答実験を行い,動的風力特性と 風応答特性ならびに実設計に用いる共振時風力の大きさ を明らかにした。今回得られた結果から,以下に知見を 述べる。

(1) 風方向基本風力係数は,高さ60m(模型高さ30cm)の 場合で,正方形1.46(風向45°),正三角形1.56(風向60°), 円形0.86である。高さ80m(模型高さ40cm)の場合は,お のおのの平面形状において,高さ60mのおよそ1.05倍と なる。

(2) 無次元共振風速は,高さ60mの場合で,円形(U 7) が正方形と正三角形(U 9)より小さい。高さ80mの場

合は,正方形と三角形の減衰定数0.5%において,およそ1.1倍の風速となり,その他は高さ60mとほとんど同じである。

(3) 共振風力係数は,減衰定数1%において,円形(C_r 4) に比較して,正方形が4倍(C_r 18),正三角形は11倍 (C_r 45)となる。高さ80mの場合は,正三角形において 高さ60mのおよそ0.8となり,その他は高さ60mとほとん ど同じである。

(4) 共振の再現頻度を考察するために,Fig.17~19に,短 期設計用荷重で想定されるおおよその基本風速30~ 40m/sに相当する無次元風速を示す。共振の再現頻度は, 円形,正方形,正三角形の順に大きい。 (5) 共振時における風直角方向の曲げモーメントは,円形 断面については,高さ60m,80mおよび基本風速30m/s, 40m/sのすべてのケースにおいて,地震荷重を下回るが, 三角形断面については,高さ80mで基本風速40m/sの場合 に,地震荷重を上回る。正方形断面については,高さ60m で基本風速が30m/sの場合をのぞいて,すべてのケースで 地震荷重を上回る。

今後は、コストダウンを主眼において、地震荷重を上回 る正方形断面の共振時風荷重の低減方策について、研究を 進める予定である。最後に今回の風洞実験にあたり、ご 協力とご指導をいただいた東京工芸大学の田村幸雄教授 と田村研究室の各位、東洋テクノ㈱の各位に厚く謝意を 表する。

参考文献

- 1) 日本建築学会.鉄筋コンクリート煙突の構造設計指針.1976.6.
- 2) 日本建築センター. 煙突構造設計施工指針. 1982.11.
- 3) 日本建築学会.建築物荷重指針·同解説.1993.4.
- 4) 日本建築センター. 実務者のための建築物風洞実験ガイドブック. 1994.6.
- 5) 荒川利治ほか. "常時微動による鉄筋コンクリート高層煙突の 減衰特性". 日本建築学会技術報告集. No.7, pp.27-32, 1999.2
- 6) 飯田泰彦ほか. "ごみ焼却施設のRC煙突における風応答特性".
 日本建築学会技術報告集. No.12, pp.35-40, 2001.8宛宛宛宛宛 ミ 番