KAWASAKI STEEL GIHO Vol.29 (1997) No.3

Measurement and Analysis of Localized Magnetic Flux Distributionin Grain Oriented Electrical Steel Sheet Using Stylus Probe Method

Kunihiro Senda Masayoshi Ishida Michiro

Komatsubara (and analyzed by a newly developed estiructive apparatus using a method. The accuracy of the local flux measurement was assured by optim load and yoke configuration. The automated and integrated measuring system rapid mapping of the magnetic flux density distribution in a sheet. The flux was found to be non-uniform in the grain-oriented electrical steel non-uniformity was attributed to the effect of magnetostatic energy, occurred boundaries due to a grain-to-grain difference in an angle between [001] of the grain boundary direction.

(c) JFE Steel Corporation, 2003

探針法による方向性電磁鋼板内部の 磁束分布の測定および解析*

川崎製鉄技報29 (1997) 3, 159-163

Measurement and Analysis of Localized Magnetic Flux Distribution

<u>1</u>
- - -
T > .
·
- -
-
要旨
新開発の探針法装置により方向性電磁鋼板内部の磁束分布を測
利用光の抹針法表記により方向性電磁鋼板内部の磁果分布を測
ş `` #──`
`··· }

探針法による測定では、探針と試料の地鉄を電気的に接触させる 必要がある。筆者らは絶縁被膜付きの方向性電磁鋼板に対して、先 り、探針と地鉄を接触させる方法を採用した。ここで、探針には、

Mainstream of flux Specimen Rolling direction 端部の磁極による静磁エネルギーによりほば説明することができ、