KAWASAKI STEEL GIHO V127 (1995) No4

High finds let Cite ign dBigs tell a (Fiana Kasabata) (TayYa) (Oanfiaignan) : 780 600 780 780 Sip Tjøl istbigtsinkig adbigtsøv idin begößbeim I jac diete babilataYR baba baba ble ble -tay tettle 1e780 N/2m leste 6th at peadle bey **XX** H-hap had by TMPC adap has LwYR poise 6 **faltah fa**adatekloybbbfylbhiska **Maka**an del:1600 N/2n hs Thm adaly **biblia distriy** Hka: -parb (cJFE StCppb2003

抽

Catavary			A 41	Spec	
Category	Type or Steel	Function	Control factor	Application	Spec. "Brand name"
	○ Low VR HT eteal	Low VS & HT	Vielding behavior	W. //	116 (3136
<u> </u>					
	· ·				
1					
1					
					
ke'yi -					

ミクロ組織を制御している。新 JIS 規格と耐火 H 形鋼の代表化学 組成、フランジの 1/4 高さの機械的性質をあわせて Table 5 に示す が、新規格を十分満足する特性が得られている。

- 4 建設コスト削減と構造物の軽量化に寄与する 新機能鋼材
 - 4.1 溶接性を向上した低予熱型橋梁用 HT 780 鋼

i.					
)— <u>———————————————————————————————————</u>					
3 - FC					
* · -					4
.=					
	Target properties	Countermeasures	Control Conventional	Developed	
1	Target properties Preheat temperature ≤50°C	Countermeasures (1) Low C content (2) Low P _{cm} value			
		(1) Low C content (2) Low $P_{\rm cm}$ value	Conventional 0.10~0.13% 0.24~0.25%	Developed ≤0.09% ≤0.23%	
		(1) Low C content (2) Low $P_{\rm cm}$ value	Conventional 0.10~0.13% 0.24~0.25%	Developed ≤0.09% ≤0.23%	
		(1) Low C content (2) Low $P_{\rm cm}$ value	Conventional 0.10~0.13% 0.24~0.25%	Developed ≤0.09% ≤0.23%	
<i>T</i>		(1) Low C content (2) Low $P_{\rm cm}$ value	Conventional 0.10~0.13% 0.24~0.25%	Developed ≤0.09% ≤0.23%	
	Preheat temperature ≤50°C	(1) Low C content (2) Low P_{cm} value	Conventional 0.10~0.13% 0.24~0.25%	Developed ≤0.09% ≤0.23%	
	Preheat temperature ≤50°C	(1) Low C content (2) Low $P_{\rm cm}$ value	Conventional 0.10~0.13% 0.24~0.25%	Developed ≤0.09% ≤0.23%	
	Preheat temperature ≤50°C	(1) Low C content (2) Low P_{cm} value	Conventional 0.10~0.13% 0.24~0.25%	Developed ≤0.09% ≤0.23%	

100 0.25%の従来型 HT 780 鋼と比較して、最高硬さが約 40 ポイント Reheat temp. (°C): 1320 低下することがわかる。この硬化性の低下により、Table 9 に示す ように、20℃、湿度 60%の環境において 45℃以下の割れ阻止予熱 **₹ 80**

Table 11 Mechanical properties of TMCP heavy-wall H-shape at specific portions

			• `				
Test locations		YS (N/mm²)	TS (N/mm²)	YR (%)	El (%)	_v E _{0 C} (J)	Location map
Specific	ationa	≥ 355	520~640	≤80	≥21	≥27	2/4t2 t1=50 1/4t2 3/4t2 t2=80
	√4 t₂	417	560	75	34	258	W1/4
F 1/4	2∕4 t₂	407	556	73	35	232	F1/4 - + + + -
	$\frac{3}{4}t_2$	412	559	74	34	235	1/4t1.
	1/ ₁ t ₂	410	556	74	34	238	F2/4 Web
					•	200	1

Table 12 Example of dimensions of tapered plates manufactur-

を制御した新しい高機能鋼材である傾斜板厚鋼板(テーパプレー

Steel	Туре	Thick. (mm)		Width	Length (mm)		
		ΤI	T2	(mm)	L1	L2	L3
SM490YB	(b)	28	13	3 450	1 090	8 000	1 095
SM520C	(a)	44	25	3 040	ı	9 700	-

Ł

まとめる。

- (1) 低 YR 高張力鋼では、軟質フェライト相と硬質マルテンサ イト相からなる複合組織を利用し、硬質相の体積率と形態を制 御することによって、YRが75%でかつ引張強さで590 N/ mm²級の高張力化を達成している。
- (2) 極低降伏強度鋼では、結晶粒径制御と炭室化物形成元素 (Nb, Ti)の炭素(窒素)固定作用を利用することで極めて低い

||後小窓岸と室田|| ブロネーク材制を耐電路が材レーブ利田オ