
KAWASAKI STEEL GIHO Vol.24 (1992) No.4

Characteristics of Chromium Containing Alloyed Steel Powders with High Wear Resistance

	(Kuniaki (Ogura)	(Osamu Hurukimi)	(Koji Yano)
	(Toshiyuki	Minegishi)		
	:			
			Cr	
	1% Cr-0.7 Mo-0.39	% Mo	KIP 4100	-
			KIP 4100	
		1100 N	MPa	Cr
	Мо			686 MPa
	KIP 4100	0.10 Mg/m3	7.18 Mg/m3	
	KIP 4100	1420	MPa	KIP 4100
Ni				

Synopsis :

Alloyed steel powders containing Cr have been developed for the production of heavy-duty structural parts with high wear resistance. KIP 4100V is a low-oxygen pre-alloyed powder containing 1% Cr-0.7% Mn-0.3% Mo, and provides high compressibility. Produced by a water-atomizing and vacuum-annealing process, KIP 4100V attains a tensile strength of more than 1100 MPa after carburizing. Composite-type Cr containing alloyed steel powder, which contains prealloyed 1% Cr and composite-type alloyed 1% Mo to improve the compressibility of Cr-containing powders, attains a compressibility of 7.18 MPa, when pressed at 686 MPa, and higher tensile strength than that of KIP 4100V after bright-quenching at 1420 MPa. The wear resistance is comparable to that of KIP 4100V, and is more than one hundred times greater than that of Ni-containing composite-type alloyed steel powder. the sintering shrinkage of the composite-type Cr-containing alloyed steel powder is suppressed by transient liquid-phase sintering, and the dimensional change during sintering is very small.

Characteristics of Chromium Containing Alloyed Steel Powders with High Wear Resistance

	要旨
	高齢度、耐磨耗性性結系は田の 錫粉 として - Cr エネムネ細いい
4 •**·	
	· · · · · · · · · · · · · · · · · · ·
×	
- 	
,	
r	

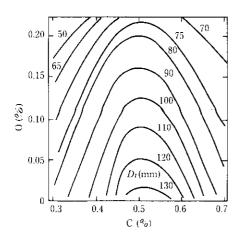
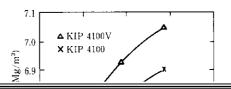


Fig. 1 Effect of C and O contents on ideal critical diameter D_1 of Cr containing powder-forged steels

Cr 予合金鋼粉では, 圧縮性は鋼粉中の不純物 元素である O, C および N 量の低減 とともに 向上する。一方, Cr は, Mn および Mo に次いで焼き入れ性を 高める元素として, Mn とともに 容製鋼 材に広く用いられている。Fig. 1 に Cr 系合金鋼粉の酸素量と添加 黒鉛量とを変化させて得られた焼結鍛造材の焼入れ性を表す理想臨 <u>累</u>直移 D. た示す. 1, 七1 の最素量で水理相陸界直径は 酸素量の低

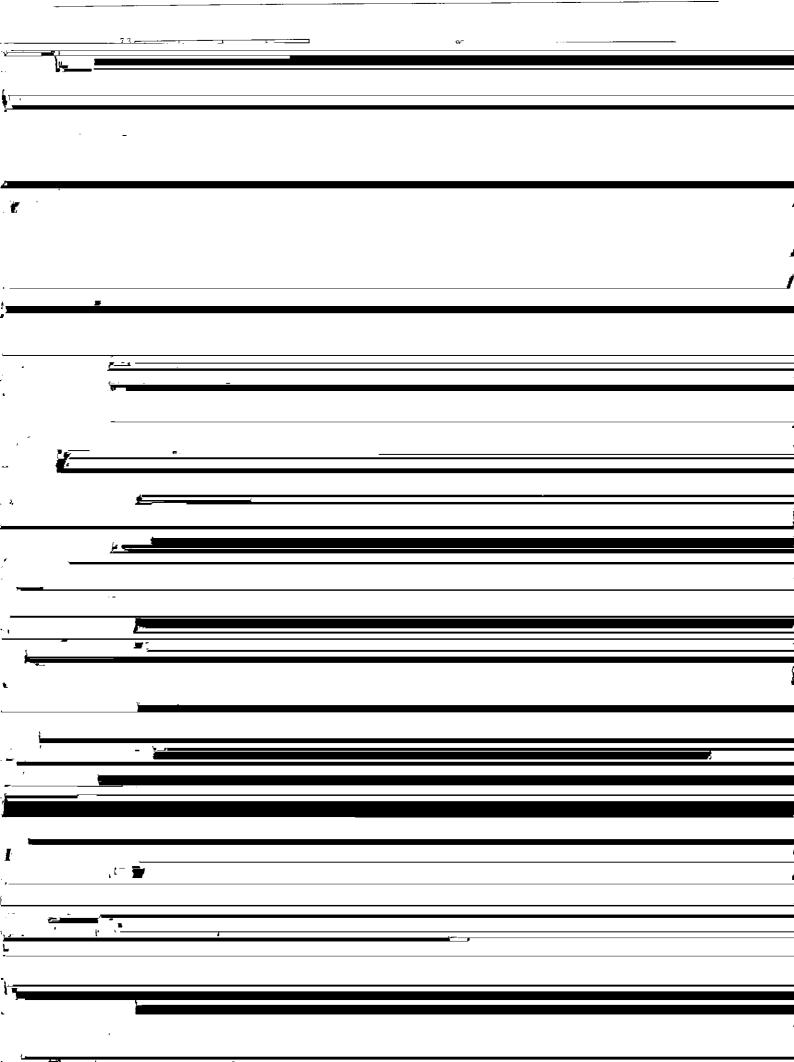
Table 1	C, O and N	contents of	KIP 4100V	(%)
---------	------------	-------------	-----------	-----


	0	С	N
KIP 4100V	0.10	0.02	0.001
KIP 4100	0,58	0.05	0.006

1523K で 60 min 焼結した。浸炭焼き入れはカーボンポテンシャ ル 0.7, 0.9 および 1.1% の条件で 1203K で 30 min 行い油中に焼 き入れ後, 453K で 60 min 焼きもどした。

3.2 結果と考察

3.2.1 KIP 4100 V 鋼粉の圧縮性


KIP 4100 V 鋼粉の圧縮性を Fig. 2 に示す。 従来のガス 還元鋼 粉 (KIP 4100) と比べ, O, C および N が低減され圧縮性が 0.14 Mg/m³ 向上した。

•			
12			
E			
۱ یک د			
<u>.</u>			
 L			
ي بر			
1			
· · · · · · · · · · · · · · · · · · ·			
1	 		
])			
.)) .)			
, jyrs,			
)) }}			

à.

Table 6	Mechanical	properties	of	sintered,	carburized	and
tempered compacts						

Powder	Tensile strength (MPa)	Absobed energy (J)
A (1% Cr-1% Mo)	1120	9.4
B(1% Cr-0.3% Mo-0.7% Mn)	1100	7.6

Table 7 Fatigue properties of sintered, carburized and tempered compacts

Table 8 Dimensional change of sintered compacts

Powder	Alloying method	Dimensional change (%)	Standard deviation of dimensional change (%)
A (1% Cr-1% Mo)	Modified composite-type	0.08	0.02
A (1% Cr-1% Mo)	Mixing	0.09	0.05
B (1% Cr-0.3% Mo-0.7% Mn)	Preailoying	-0.52	0.03

	Powder	Sintered density (Mg/m³)	itigue endurance limit (MPa) tating Contact	焼きもどし組織中に残留	習する軟らかく耐摩耗性の劣るオース 	
		- .				
	-					and the second se
			 .			
í						

	2000	3 (a)White phase	以上のように Cr 複合合金鋼粉Aでは遷移 液相の出現により Mo の拡散および空孔の球状化がはかられ,焼結時の収縮が抑制され, 	
<u>}</u>	-			
8 				
	1 <u></u>			
ſ				
ç.		- 1-		
, #	F		·	
<u>с</u>				
••••••••••••••••••••••••••••••••••••••				
•				
	¥			
,				
(
·				
····				
·				
•				
1 	·			
}				
	<u>-</u>			
' ' 				
- ty	 _			
<u></u> يدا ر	-			