KAWASAKI STEEL GIHO Vol.11 (1979) No.1

A New Sulfide-Shape Control Technique for Producing HSLA Steels Free from **Hydrogen Induced Cracking**

Synopsis:

A new sulfide-shape control technique has been developed which minimizes the precipitation of MnS in channel-type segregates and prevents the occurrence of Ca- or RE-bearing macroinclusions in subsurface and bottom cone of ingots of Ca- or RE-treated HSLA steel. The degree of sulfide shape controlling with Ca or RE is uniquely evaluated in terms of ACR (Atomic Concentration Ratio) of effective Ca or RE to S in the melt in mold. Precipitation of MnS in the channel-type segregates is made minimal by keeping the value of ACR in excess of 1.8 at $[%Mn]=1.2$ 1.9 and $[%Mn]=1.0$, at which virtually no hydrogen induced cracks are found under BP-test conditions. Subsurface macroinclusions are found eliminated by limiting the amount of addition of Ca not exceeding 0.5kg/t-steel when feeding iron-clad Ca-wire into Arshrouded teeming spout. Bottom cone sedimentation of clustered CaS or RES and RE2O2S inclusions, which also causes HIC, is found to disappear at $[\%Ca][\%S]**0.28$ 1³ 10(-3) in Ca-treated ingots and at [%RE][%S] 1³

 $V. V$

(c) JFE Steel Corporation, 2003

UDC 669.14.018.292.019 620.192.45/.46:56.11 546.41'221:546.651/.659'221

 44

硫化物形態制御による耐水素誘起割れ鋼の開発

A New Sulfide-Shape Control Technique for Producing HSLA Steels Free from Hydrogen Induced Cracking

 \sim 100 μ m \sim

 \ldots

 \sim \sim

 \sim \sim

1979

 $\overline{1}$

į.

 $\frac{1}{\sqrt{2}}$

 $\ddot{}$

1979

 $\frac{1}{2}$ \cdot

٠Ţ.

المستشار

 \sim \sim

ŧ

ħ

1,

 \vdash

ACR=1.3にすると,鋼塊端部と底部の割れは 無くなるが、偏析の強い必幅の 25~100%高さ位 置には割れが発生する。これは、偏析部の硫化物 形態制御には、他の部分より高値の ACR が必要 であることを示すFig.10の結果と、非常に良く対 応する。ACRを更に増して2.0にすると、偏析部 れ防止に必要なACR値も小さくなる。

-方、試験片断面の調査結果から、実用上有害 な階段状の割れは, [Mn] = 1.0%のとき ACR ≥ 0.8, $[Mn] = 1.2 - 1.9\% \odot \xi$ \land $ACR \ge 1.3$ ξ $\frac{1}{3}$ れば防止できることがわかった。

MnSによる割れを防止するに必要なACR値を, $1 - 1 = -1$. The $1 + 1 = 1$

 ~ 1000

 \sim \sim \sim \sim \sim

and the company of the company

 ~ 100

ACR ≈0.4でほぼ達成され、ACR ≈0.8で最良に なる。これに対し、耐水素誘起割れ性はACR≈0.8 を越えても改善効果がある。このように鋼材の用 途に応じて経験的に決めた ACR の適正域を(6) 式によって適正なCaとSの濃度域に換算([O]。 25ppmと仮定)してFig.16に示す。同図でCaSの 底部集積は[%Ca][%S]^{0.28} \leq 1×10⁻³ とすれば防 エナキス - 脚伸高 F++(%Cal/f%S1=0-65で満足

低硫鋼にする必要がある。以上の条件で決まる Fig.13中斜線域を"Ca領域"と呼ぶことにする。 同様に、REとSの適正濃度域 "RE領域" も本研 究結果によって決めることができる。

5. 結 言

CaあるいはREによる硫化物形態制御を利用し

 \sim

- 10) B.M. Taggev and Yu.D. Smirov: Stal', 17 (1957), 823
- 11) M. Randle and I.G. Davies : BSC Open Report, CDL/MT/15/73, (1973)
- 12) 小沢, 小口, 大井, 中井: 鉄と鋼, 59 (1973), S59
- 13) V.G. Smith, W.A.Tiller and J.W. Rutter : Can.J. Phys., 33 (1955), 723

