0[(Ù"'

] î0 5r • KAWASAKI STEEL GIHO Vol.3 (1971) No.3

P/%5 "bž « P0ŽØb#.1=0£'ì

Theoretical Calculation of the Solu bility of Gases in Liquid Metals

ä0b ‡j (Toshihiko Emi)

0[" :

È(ò>*'E(ò>*!c(ò b>*5r>* ¥ Â Ý °>* ½ µ £ Ý>*5;/% / p | b P0Ž Ø †>* ® / b"g ‰&ì ' b M X [6 • Percus-Yevick b ' b [/#+0Ž>& the scaled particle theory >' †#Ý 8 Z0£'ì K S 5 " N Ê b [/#+ ,, c>* P/%5 " b G ; ¹ î ± _ | C œ : \ Ì I € Z 8 • ® / S 4 I Ê † 62Š M • Ã µ Ÿ å ¢ Ã Û Ó ± î ? } ô u S È(ò N Ê b [/#+ ,, c>*4= O2¥7³ b 6õ X \ K Z Ó u S 'E(ò>*!c(ò N Ê b [/#+ ,, c>* Q € } † \ ~ ? G t q3Æ K5 " N Ê \ b6ë b) œ b ¹ w) œ ö †*f Ö K Z N K S #.1= ' _ G b [/#+ ,, † Q W Z0£'ì K S P 0Ž Ø c>* Í \ | C M+′ K S

Synopsis :

The solubility of hydrogen, nitr ogen, and carbon in liquid pure iron, cobalt, nickel, and copper is calculated in terms of a hard sphere version (the s >æled particle theory) of the Percus-Yevick equation for the liquid state. The hard sphere radius of a metal atom is estimated from the packing density for the liquid structure factor which has been reported to fit satisfactorily with the observed diffraction data for the liquid metals. For a hydrogen atom dissolved in the metals, the hard sphere radius is derived as a function of the screening distance. The radii for nitrogen and carbon atoms in the metals are estimated by taking into account the covale of the bonding between the solutes and surrounding nearest neighbor metal atoms. Good agreement is obtained between the theoretical predictions and experimental observations.

(c)JFE Steel Corporation, 2003

•ec blîª?}70t[ArM

		溶融全属の	ガス溶解度の	理論計算	
_			·		
- -					
·					
· ·					
		۱.		,	
· •		ζ. <u>Α.</u> ΄ 51. μ			
	jr=.				
<u>.</u>					
F					
1 <u></u>					
<u>[</u>					
•					
1.					
• 14·					
·					
<u> </u>					

Synopsis :

論・報 文

The solubility of hydrogen, nitrogen, and carbon in liquid pure iron, cobalt, nickel, and copper is ·- 4· 60**0**

۳Y

UDC 669.01:541.123.28

262

	ことができれば,融体中への水素の溶解をつぎの 二つの段階に分解できよう。	$K_0 = kT \left\{ -\ln(1-y) + \frac{9}{2} - \left[-\frac{y}{1-y} \right] \right\}$	$]^2$ }
	(i) 融体中に, 球を入れるに必要な寸法の穴を 作る。	$-\frac{\pi p a_M^3}{6}$	(5)
	(ii) 穴の中に球をはめこむ。球と周囲の融体の 間には相互作用が生じる。	$K_1 = -\frac{kT}{a_M} \left\{ 6 \left[-\frac{y}{1-y} \right] + 18 \left[-\frac{1}{2} \right] \right\}$	$\left(\frac{y}{-y}\right)^2$
1. 1	╡/:i)ァ 亜・ト z	$+\pi p u_M$	
- -			
ί_−ι <u>−</u>			
,			
<u>.</u>			
,	中の水素の化学ポテンシャルは	$K_2 = \frac{kT}{\sqrt{2}} \left\{ 12 \left[-\frac{y}{\sqrt{2}} + 18 \left[-\frac{y}{\sqrt{2}} \right] \right\} \right\}$	$\left[- \right]^2$
, <u> </u>			
÷			
			
	۵.		
-			
	<u>م</u> ر ا		

 $+kT\ln \frac{x_H}{v_H}$ ……(1) *m_H*:水素の原子量 k: ボルツマン定数 h:プランク定数 T: 絶対温度 XH: 水素のモル分率 v_H:融体の部分モル体積

溶解度があまり大きくない場合にはつぎの関係 が成立する。

$$\frac{x_{H}}{v_{H}} \cong \frac{N_{H}}{V_{H}} = \frac{[\% \text{H}] N_{0} d_{M}}{100 M_{H}} \qquad \dots \dots (2)$$

N_H:融体中の水素原子数 V_M:融体体積

$$K_{3} = -\frac{4}{3} \pi \rho \qquad \dots \dots (8)$$
$$y = \frac{\pi a_{M}^{3} \rho}{6}, \quad \rho: M体球数/cm^{3} \dots (9)$$

(1)式の了i項は、偽中性水素原子球が剛体では なく,剛体球ポテンシャル(井戸型)の他にソフ トポテンシャルを有する時にあらわれる。後述す るように、遮蔽されたプロトンと金属イオンに対 して、その直径をこえれば事実上剛体球ポテンシ ャルを受けるようなanとamを定義すれば、 gi は (1)式からおとすことができる。

	Vol.3 No.3	溶融金属のガス溶解度の理論計算	263
	(TT^)	Daiaa21) フュ →まぶ裕姉ム家	建固调致全量由注
		, [
	(.		
	<u> </u>		
<u>. </u>	_ ¥ ć		
	_ `		
्र 'क			• • .
<u> </u>	17°		
, ,. <u> </u>			
, ,			
j a 			
<u> </u>			
۱ <i>۰</i>			
· · ·			
1 .			
., ,			
	-		
* 	A.		

	溶融鉄族 悪移 金属の液体構造 用子は ごく 鼻近	ろのでなるら
<i>i</i>	の子祖田、四水、川川、の上社上町部市園の間生	去1 源床登庫について 宇藤府に並みた遊体 構造
1,		
d l		
1		
<u> </u>		
	·	
·,		
-		
-		
	によって求めら れ て い る。鉄族遷移金属液体で	因子の剛体球近似による解析からパッキングパラ
	A CAR A FRANCIAL TALK, MARCHAR AND A COMMAND AND A	
r. * }		
<u> </u>		
<u> </u>		
· <u>-</u>		
¥		
,		
4 }		
يت. جنبي ٢٠		
-		
· ·		
Sa ∖Ijar		
-		
<u> </u>	Ar I -	
<i>15</i>		
<u> </u>		
r		
·		
1		
6		
•		
_ '		
• ·		
_		

Ascarelli ²⁰ もこの値を術に使っている。yが0.45 Ascarelli ²⁰ もこの値を術に使っている。yが0.45 ************************************	Cの値を線に使っている。yが0.45 International (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		Vol.3 No.3 ※陥み層のエッダ	冬飯 庇の 神論計算 ふちょう
Ascarelli ³⁰ & この値を御に使っている。 y が0.45 	この値を際に使っている。まかい.45 パパーー パーー パーー パパーー パパーー パーー パーー パーー パーー パーー パーー パーー パーー パーー	<u>7 -</u>		
Ascarelli ¹⁰ もこの値を第に使っている。かが0.45 	この値を線に使っている。yが0.45 	2	· · · · · · · · · · · · · · · · · · ·	
Ascarelli ¹⁰ 6 この値を第に使っている。まが0.45	この値を第に使っている。サが0.45 I//			
Ascarelli ¹⁴⁹ もこの値を第に使っている。すが0.45	C (決めた 2.19Å に近い。結網と 構造の違いを考慮すれば、このー こる。 た態の飲、コバルト、ニッケルにつ こ。 をしていたい、トルト、ニッケルにつ こ。 本 「 」 」 」 」 」 」 」 」 」 」 」 」 」		<u>.</u>	
 中の綱について決めた 2.19Å に近い。 紙鋼と Cu₅Sn₅の液体構造の違いを考慮すれば、この一 致は良好と思える。 日下,液体状態の供、コバルト,ニッケルにつ 1.1 木素溶解度の温度依存性 Fig. 1 は、信頼できる y の実網値が得られ、 温度での比較である。(12)式は y とny*に酸点。 ケーク・メック キュタケルにつ 			Ascarelli ³⁴⁾ もこの値を銅に使っている。 y が 0.45	<i>.</i>
中の錦について決めた 2.19Å に近い。純銅と CuShs の液体構造の違いを考慮すれば、この一 致は良好と思える。 4.1 木素溶解度の温度依存性 Fig. 1 は、信頼できる y の実測値が得られ、 温度での比較である。(12)式は y とれ*に敏感。 レイン・キャキがた としょうとくの				
 中の鋼について決めた 2.19Å に近い。純鋼と CusSa,の液体構造の違いを考慮すれば、この一 数は良好と思える。 目下、液体状態の鉄、コバルト、ニッケルにつ 温度での比較できる y の実測値が得られい 温度での比較できる。(12)式は y とれい*に敏感、 	Nneth Freebraff® ホックロト C次めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、このー : る。 大態の鉄、コバルト、ニッケルにつ こで上でしたし、しまし、アルトの 4.1 水素溶解度の温度依存性 Fig. 1 は、信頼できる y の実測値が得られた 温度での比較である。(12)式は y とれが*に敏感な のニュートレンジェットレング マン・マンジョン・ション・のの)			
 中の銅について決めた 2.19Å に近い。純銅と Cu,Su, の波休得造の違いを考慮すれば、この一 武は良好と思える。 日下, 液体状態の鉄、コバルト, ニッケルにつ していまながかましていたい。とより、ための、 コイルト、ニッケルにつ していまながかましていたい。とより、ための、 コイルト、ニッケルにつ 	North Faelstaf ⁽³⁹⁾ 米波は一つつらっ て決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、この一 こる。 大能の鉄、コバルト、ニッケルにつ マナレマレナン、トナリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、オリーアントの 「またマレナン」、「またマーアント」、 「またマレナン」、 「またマーナン」、 「またマーナン」、 「またマーナン」、 「またマーナン」、 「またマーナン」、 「」、 「マーユー」、 「、 「」、 「」、 「」、 「」、 「」、 「、 「」、 「」			
 中の鍋について決めた 2.19Å に近い。純鍋と CusSns の液体構造の違いを考慮すれば、この一 致は良好と思える。 日下、液体状態の鉄、コバルト、ニッケルにつ エマッキは約件サム・アレム・ション・クロ 	North Freektaf ⁴³⁰ - 水斑い。純銅と 構造の違いを考慮すれば、この- こる。 大態の鉄、コバルト、ニッケルにつ ー・レーマー・ホーー リュリー - トゥック			
- - - - - - - - - - - - -	North Faeletaf ⁵⁸⁰ ××ホ // つつへの て決めた 2.19Å に近い。純約と 構造の違いを考慮すれば、この一 こる。 大協の説、コバルト、ニッケルにつ マートー・ション・クロ 「一」 「一」」 「一」」			
中の鍋について決めた 2.19Å に近い。純鍋と CusSus の液体構造の違いを考慮すれば、この一 致は良好と思える。 目下,液体状態の鉄、コバルト、ニッケルにつ してもない類化キャーでは、 という ことの	Noch Freistaff ⁸⁰ Kボはーつつとの て決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、このー こる。 大態の鉄、コバルト、ニッケルにつ ーマトロ・ナルト 1.1 トットエック 「マート」・ベート・ビックンド・ハート・ハート・ハー 「マート」・ベート・ビック・トゥックンド・ハート・ハー 「マート」・ベート・ビック・トゥックンド・ハート・ハー 「マート」・ベート・ビック・トゥック・ビック・トゥック・アー・ハート・ハー			
 中の鋼について決めた 2.19Å に近い。純鋼と Cu₈Sns の液体構造の違いを考慮すれば、この一 致は良好と思える。 日下,液体状態の鉄、コバルト、ニッケルにつ してか もい却たなしていたい ともと ったくへ 4.1 木業溶解度の温度依存性 Fig. 1 は、信頼できる y の実測値が得られ、 温度での比較である。(12)式は y とnu*に敏感。 	North Faelstaff ⁸⁰⁾			
 中の鋼について決めた 2.19Å に近い。純鋼と Cu₆Sn₅の液体構造の違いを考慮すれば、この一 致は良好と思える。 日下,液体状態の鉄、コバルト、ニッケルにつ してきまは短生されていたい。とまし、これの 	North Faelstaff®の ハ(%は一つ つひの て決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、このー こる。 「感の鉄、コバルト、ニッケルにつ マーレンジェ オトロンブレンジェ オトロジブレングレンク ##*に敏感な つつ トレンジェ オトロジブレングレンク ##*に敏感な つつ トレンジェ オトロジブレングレンク ## 			
中の銅について決めた 2.19Å に近い。純銅と Cu ₈ Sn ₅ の液体構造の違いを考慮すれば、この一 数は良好と思える。 目下、液体状態の鉄、コバルト、ニッケルにつ ローマ * いわせ ケレイレイレー 1 より こうとの ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	North Faelstzff30)			
 中の銅について決めた 2.19Å に近い。純銅と Cu₅Sn₅ の液体構造の違いを考慮すれば、この一 致は良好と思える。 目下、液体状態の鉄、コバルト、ニッケルにつ してすまはおかたまたていたい、ともとしていたの 4.1 水素溶解度の温度依存性 Fig. 1 は、信頼できる y の実測値が得られ: 温度での比較である。(12)式は y とny*に敏感。 のて、としい必定 *レロソフト アレーク (1) 	North Faelstaff ³⁰⁾ 水液は一つ files 花道の違いを考慮すれば、この一 こる。 大態の鉄、コバルト、ニッケルにつ ・ * ト イ・1 水素溶解度の温度依存性 Fig. 1 は、信頼できる y の実測値が得られた 温度での比較である。(12)式は y とnu* に敏感な の 「 ・ ト い * * * * * * * * * * * * * * * * * *			
 中の鍋について決めた 2.19Å に近い。純鍋と CusSns の液体構造の違いを考慮すれば、この一 致は良好と思える。 日下,液体状態の鉄、コバルト、ニッケルにつ ユベルト、ニッケルにつ ユベルト、ニッケルにつ ユベート・ト・ト・ト・ト・ト・ト・・・・・・・・・・・・・・・・・・・・・・・・	North Firelataff ³⁹⁾ *(滅化-つつとっ て決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば, このー とる。 大態の鉄、コバルト、ニッケルにつ ・ * トマレナレ ノナノ ・ ・・・・・ - * トマレナレ ノナノ ・ ・・・・ - * 1	-		
 中の鋼について決めた 2.19Å に近い。純鋼と Cu₅Sn₅の液体構造の違いを考慮すれば、この一 致は良好と思える。 目下,液体状態の鉄、コバルト、ニッケルにつ にてきまいがかりましてしたし、とより、またの 「 	North Faelstaff ³⁰⁾ 水焼体のコひろ て決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、このー たる。 た他の鉄、コバルト、ニッケルにつ たちっくたいとしましてきるの 「Fig. 1 は、信頼できる y の実測値が得られた 温度での比較である。(12)式は y とny*に敏感な のマーより、ジェ *トッパオト ガレトのキレトのす			
中の銅について決めた 2.19Å に近い。純銅と Cu _s Sn _s の液体構造の違いを考慮すれば, この一 致は良好と思える。 目下, 液体状態の鉄, コバルト, =ッケルにつ してか *は却生かたていたい りょう かしたの *	C決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、この一 たる。 大態の鉄、コバルト、ニッケルにつ こともっ ためで、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	() —	——···································	
中の銅について決めた 2.19Å に近い。純銅と Cu ₉ Sn ₈ の液体構造の違いを考慮すれば、この一 致は良好と思える。 目下,液体状態の鉄、コバルト、ニッケルにつ してきませがたキレマレオレントはしていたの モニー	C決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば, このー こる。 Fig. 1 は, 信頼できる y の実測値が得られた 温度での比較である。(12)式は y とnu*に敏感な キャートントがな *1・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	_		
 中の銅について決めた 2.19Å に近い。純銅と Cu₉Sn₅ の液体構造の違いを考慮すれば、この一 致は良好と思える。 日下,液体状態の鉄、コバルト、ニッケルにつ セーチャンドが、キャルビオンデントクチェーク 	な決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、この一 とる。 Fig. 1 は、信頼できる y の実測値が得られた 温度での比較である。(12)式は y とnu*に敏感な アメトマレナン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
中の銅について決めた 2.19Å に近い。純銅と Cu ₅ Sn ₅ の液体構造の違いを考慮すれば、この一 致は良好と思える。 目下,液体状態の鉄、コバルト、ニッケルにつ レイエ *144/± * トマレナレ、1 + 1 - * ト * * * * * * * * * * * * * * * * *	 な決めた 2.19Å に近い。純銅と 構造の違いを考慮すれば、このー とる。 大態の鉄、コバルト、ニッケルにつ マケルビーン・シンケの イー・シンゲの イー・シンゲの イー・シンゲの 	,		
中の銅について決めた 2.19Å に近い。純銅と Cu _s Sn _s の液体構造の違いを考慮すれば、この一 致は良好と思える。 目下、液体状態の鉄、コバルト、ニッケルにつ レイチ *いわけキャレイレナレートホト・テレチャの	 は次の違いを考慮すれば、この一 とる。 	-		
Cu ₀ Sn ₅ の液体構造の違いを考慮すれば、この一 致は良好と思える。 Fig. 1 は、信頼できる y の実測値が得られ: 目下,液体状態の鉄、コバルト、ニッケルにつ 温度での比較である。(12)式は y とn _n *に敏感. ************************************	構造の違いを考慮すれば、この一 とる。 Fig. 1 は、信頼できる y の実測値が得られた 温度での比較である。(12)式は y とny*に敏感な マイトアレナレート・レート・レーク		中の銅について決めた 2.19Å に近い。純銅と	4・1 水素溶解度の温度依存性
取扱していため。 145.1 (4), 信頼できる 9 の矢側値が持ちれ。 目下, 液体状態の鉄, コバルト, ニッケルにつ 温度での比較である。(12)式は y とnu*に敏感 レイム *いわせ *レンド・レント *レンド・ロート *レンド・ロート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・レート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・マート *レンド・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンド *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンド *レード・オレンドブレ *レード・オレンド *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンド *レード・オレンドブレ *レード・オレンドブレ *レード・オレンド *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンド *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンドブレ *レード・オレンド *レード・オレンドブレ *レード・オーシ・*オーンド *レード・オー・**********************************	パー・パー・パー・パー・パー・パー・パー・パー・パー・パー・パー・パー・パー・パ		Cu ₃ Sn ₅ の液体構造の違いを考慮すれば、この一	Fire 1 は、信頼できる ar の実測値が視られた
ישער אישלאליער אישראין איז איז איז אישראין איז			(以はRy) こ心える。 目下,液体状態の鉄,コバルト,ニッケルにつ	温度での比較である。(12)式は $y \ge n_{N}$ *に敏感な
			1. ma #12+20/4 with m1. +11. 1.2.1 1.0 m	A
		ş 7 -		
			/]	

球半径

(9),(15)式および **Table 2**の y の値から剛体 球半径を計算して,**Table 3**に示した。計算され た剛体球半径は,最隣接イオン間距離の½の約86 %近傍に来ている。前に触れたように,このあた りでは,トーマスフェルミ法は遮蔽を計算する上 で比較的よい近似を与える。

Table 3	Hard sphere radii of screened
	metal ions $(1/2 a_{M})$ and protons
	$(1/2 a_M)$ in liquid metals

a	Metal	Temp. °C	1/2 a <u>⊮</u> Å	1/2 a _{II} Å	1/2 <i>R</i> Å
		ť	,,,		

炭素の溶解度は C(graphite)=C(gas), $AF_{f}^{o} = -RT \ln p_{e}$(19)

JF_f^o: グラファイトから炭素ガスが生成す る際の標準生成自由エネルギー

および, (11)式のかわりに

を用いて(1)~(10)式を解き

$$\ln \left[\frac{100 p_c M_c}{100} \right] = \overline{g}_c$$

がなんらかの方法で知れれば,この理論は,経験 的なパラメターを使っていないので,基本的な物 理定数だけで溶解度を予測できる。

研究の抜萃であり、Prof. R. D. Pehlke と共著で すでに発表した論文⁴⁵⁰にもとずいている。

7. 謝辞

この論文の水素溶解度に関する部分は、著者が

34) P. Ascarelli : Phys. Rev., 173, (1968), 271
Der Kimmen ist der Der Klasster und Die Allemalakaffen Daf 15 171
¥
0
36) N.F.Mott : Adv. Phys., 16, (1967), 49
37) J. Frieder. Ref. 23, 350.
39) J. N. Hodgson : Phil. Mag., 5, (1960), 272
40 p 2 1 11 1 0" - there de Def 15
, ,
41) J.M.Ziman : Ref. 15, 551
41) J.M. Ziman : Ref. 15, 551