KAWASAKI STEEL GIHO Vol. (1969) No.3

A Consideration Concerning Roll Design for H-Shapes

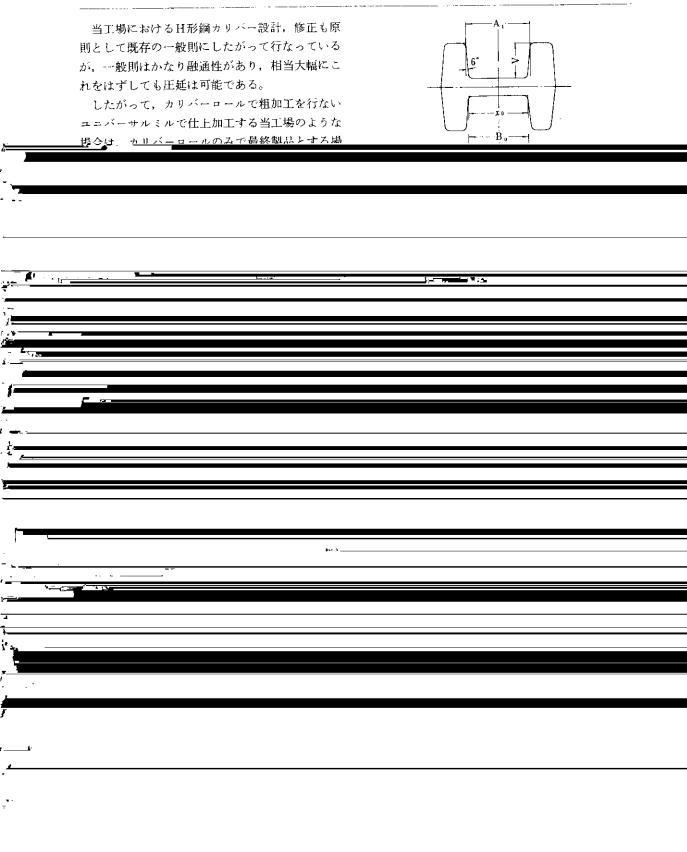
(Tomotaro Ono)

H形鋼カリバー設計における一考察

A Consideration Concerning Roll Design for H-Shapes

小	野ガ	支太	郎*	森	Ш	欣	則**
Τc	omota	ro On	۱ 0 ,	Yos	hinc	ori Mo	orikawa
松	室	知	視***	辻		Æ	幸***
Τc	momi	Mate	umuro	Mas	sayu	ki Tsı	ıji
伊	藤	守	正****				
M	orima	sa Ito					

Synopsis :


۱,

A method of caliber design for H-shapes, using 3-high rougher mills and universal mills is described.

As a long-established general rule for designing caliber for I-beams is still quite useful for today's applications, it has been used for the forming process of sizing pass of H-beams.

The general rule is so flexible that it can be used for rolling even considerably modified. In case

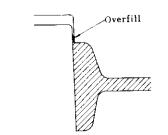
in such a way as to make a universal mill canacity halanced with that of a roughing mill and then

.

<u>ロール</u> 廃廷を管理ト1mm.にしているので <u>, 使</u>	<u>x: Zランジ間距離 _</u>
-	
	
2	
インボー 2 地 D 19mm とり1mm 左桁の	セュ:ウエブ厚さ
る水平ロール幅 B₀-1.8 mm より 1 mm 広幅の B₀-0.8mm となる。ここで直線 (a)(b)(c) は水	
	$\Delta S = -(B - t_2)\Delta x$
nm-のとうのフランジ原公美とウェブ高さ公差	標準寸法の S を S とすれば
の関係を示している。したがって水平ロール基準	$\Delta S/S \doteq \Delta S/S_0$
	一方,圧延全長しは
幅 B_0 に対する許容限界は	1 1 0 10
$m_2 = +1.8 + \epsilon$	$l=k\cdot G/S$
$m_2 = +1.8 + \varepsilon$ $m_3 = -0.8 + \varepsilon$	k:係数
$m_2 = +1.8+arepsilon$ $m_3 = -0.8+arepsilon$ $arepsilon$:縮み代	k:係数 G:ブルーム重量
$m_2 = +1.8+\varepsilon$ $m_3 = -0.8+\varepsilon$ $\varepsilon: 縮み代$ となる。	k:係数 G:ブルーム重量 ∴Al=-k•G•AS/S ²
<i>m</i> ₂ =+1.8+ε <i>m</i> ₃ =-0.8+ε ε:縮み代 となる。 その時製品寸法としてはマイナスをさけ,しか	k:係数 G:ブルーム重量 ∴ Δl=-k•G•ΔS/S ² ∴ Δl/l=-ΔS/S
$m_2 = +1.8+\varepsilon$ $m_3 = -0.8+\varepsilon$ $\varepsilon: 縮み代$ となる。	k:係数 G:ブルーム重量 ∴ Δl= - k•G•ΔS/S ²
<i>m</i> ₂ =+1.8+ε <i>m</i> ₃ =-0.8+ε ε:縮み代 となる。 その時製品寸法としてはマイナスをさけ,しか	k:係数 G:ブルーム重量 ∴ Δl=-k•G•ΔS/S ² ∴ Δl/l=-ΔS/S
<i>m</i> ₂ =+1.8+ε <i>m</i> ₃ =-0.8+ε ε:縮み代 となる。 その時製品寸法としてはマイナスをさけ,しか	k:係数 G:ブルーム重量 ∴Δl=-k•G•ΔS/S ² ∴Δl/l=-ΔS/S

۰,

2


h

۲.,

-

	and the second	
۰		
	v	
₽ <u>_</u> ~ _		
ۍ رژ	¥	
	2 - -	
	(1) 最終製品のフランジ断面積を S ₁ , ウェブ	
	断面積を S_{W} , Kal1のフランジ断面積を S_{F} , ウェ	ブ内幅 xo より Kal 1 形状を具体的に 決定しう
	前面很多 S_w とすると、 S_w/S_W と S_r/S_w の比	る。 C け同一サイズでけかシゥ 厚ふの変動がぉ _ ナ
	<u></u>	
	· • • • • • • • • • • • • • • • • • • •	
		-
	 が製品形状によりほぼ同一の値になるよう面積を 割り振る。	- も一定に保つべきである。たとえば H 8/12×200×200 の場合に来て場では、 。/-
	割り振る。	H 8/12×200×200 の場合に当工場では aw'=
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ $(c: -定)$	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ ($c: -$ 定) $\therefore S_F/S_W = c \times S_f/S_W$	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ ($c: - 定$) $\therefore S_F/S_W = c \times S_f/S_w$ (1) c は広幅系列では大きな値 (1.4~1.9) とし,	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ ($c: - 定$) $\therefore S_F/S_W = c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし、 細幅系列では小さな値(0.8~1.3)とする。	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウエブ厚みが異る H 12/12×200
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ ($c: - 定$) $\therefore S_F/S_W = c \times S_f/S_W$ (1) c は広幅系列では大きな値 (1.4~1.9) とし, 細幅系列では小さな値 (0.8~1.3) とする。 (2) その後, U1,U2 におけるパスごとのフ	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウェブ厚みが異る H 12/12×200 ×202 の場合は
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ (c:一定) $\therefore S_F/S_W = c \times S_f/S_w$ (1) c は広幅系列では大きな値 (1.4~1.9) とし, 細幅系列では小さな値 (0.8~1.3) とする。 (2) その後, U1, U2 におけるバスごとのフ ランジとウエブの圧下率 α_f, α_w を ミル原動機能	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり(3),(4)式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウェブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$
	割り振る。 $(S_w/S_w)/(S_f/S_F) = c$ (c:一定) $\therefore S_F/S_w = c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし, 細幅系列では小さな値(0.8~1.3)とする。 (2) その後, U1, U2におけるバスごとのフ ランジとウエブの圧下率 α_f, α_w を ミル原動機能 力に応じてかつその比が一定になるように選ぶ。	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 バスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウェブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$ ∴ $a_w=25$ mm
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ (c:一定) $\therefore S_F/S_W = c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし、 細幅系列では小さな値(0.8~1.3)とする。 (2) その後、U1、U2におけるバスごとのフ ランジとウエブの圧下率 α_f, α_w をミル原動機能 力に応じてかつその比が一定になるように選ぶ。 $\alpha_f/\alpha_w = c'$ (c':一定)(2)	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウェブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$ $\therefore a_w=25$ mm となり Kal 1 ウェブ厚を厚くしてバランスを取
	割り振る。 $(S_w/S_W)/(S_f/S_F)=c$ (c:一定) $\therefore S_F/S_W=c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし、 細幅系列では小さな値(0.8~1.3)とする。 (2) その後、U1、U2におけるパスごとのフ ランジとウエブの圧下率 α_f, α_w を ミル原動機能 力に応じてかつその比が一定になるように選ぶ。 $\alpha_f/\alpha_w=c'$ (c':一定)(2) c' はサイズにより最適値は若干異なるが、ほぼ	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウエブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$ ∴ $a_w=25$ mm となり Kal 1 ウエブ厚を厚くしてバランスを取 らなければならない。
	割り振る。 $(S_w/S_W)/(S_f/S_F) = c$ (c:一定) $\therefore S_F/S_W = c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし、 細幅系列では小さな値(0.8~1.3)とする。 (2) その後、U1、U2におけるバスごとのフ ランジとウエブの圧下率 α_f, α_w をミル原動機能 力に応じてかつその比が一定になるように選ぶ。 $\alpha_f/\alpha_w = c'$ (c':一定)(2)	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウェブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$ $\therefore a_w=25$ mm となり Kal 1 ウェブ厚を厚くしてバランスを取
	割り振る。 $(S_w/S_W)/(S_f/S_F)=c$ (c:一定) $\therefore S_F/S_W=c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし、 細幅系列では小さな値(0.8~1.3)とする。 (2) その後、U1、U2におけるパスごとのフ ランジとウエブの圧下率 α_f, α_w を ミル原動機能 力に応じてかつその比が一定になるように選ぶ。 $\alpha_f/\alpha_w=c'$ (c':一定)(2) c' はサイズにより最適値は若干異なるが、ほぼ	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウエブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$ ∴ $a_w=25$ mm となり Kal 1 ウエブ厚を厚くしてバランスを取 らなければならない。
	割り振る。 $(S_w/S_W)/(S_f/S_F)=c$ (c:一定) $\therefore S_F/S_W=c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし、 細幅系列では小さな値(0.8~1.3)とする。 (2) その後、U1、U2におけるパスごとのフ ランジとウエブの圧下率 α_f, α_w を ミル原動機能 力に応じてかつその比が一定になるように選ぶ。 $\alpha_f/\alpha_w=c'$ (c':一定)(2) c' はサイズにより最適値は若干異なるが、ほぼ	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウエブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$ ∴ $a_w=25$ mm となり Kal 1 ウエブ厚を厚くしてバランスを取 らなければならない。
	割り振る。 $(S_w/S_W)/(S_f/S_F)=c$ (c:一定) $\therefore S_F/S_W=c \times S_f/S_w$ (1) c は広幅系列では大きな値(1.4~1.9)とし、 細幅系列では小さな値(0.8~1.3)とする。 (2) その後、U1、U2におけるパスごとのフ ランジとウエブの圧下率 α_f, α_w を ミル原動機能 力に応じてかつその比が一定になるように選ぶ。 $\alpha_f/\alpha_w=c'$ (c':一定)(2) c' はサイズにより最適値は若干異なるが、ほぼ	H 8/12×200×200 の場合に当工場では $a_w'=$ 8.6 mm, $a'_f=13$ mm, $a_w=17$ mm, $a_f=46$ mm n=6 パスであり (3), (4) 式より $\alpha_f/\alpha_w=19.0/10.7=1.78$ となる。ここでウエブ厚みが異る H 12/12×200 ×202 の場合は 12.6/ $a_w=(1-1, 0.7/100)^6$ ∴ $a_w=25$ mm となり Kal 1 ウエブ厚を厚くしてバランスを取 らなければならない。

	Vol. 1 No. 3	H形鋼カリバー設	計における一考察	283	
) -	Ao	Bh :Web height T :Web thickness H :Flage height ho, hg :Devided flange height Vo, Vg :Flange length			
ξ. <u> </u>					
,	1.1. 				
<u></u>					
¥					
f					
<u>له</u>					
					_
,	Ξπ1 L .				
					
•— . <u> </u>					
i .,					
** =					
<u>}</u>					
1					
) ^t II.		-			
	L				
I					
		I			
;_ 					
. L					
_					
1					
, , —					
r	— , 'e				
. <u>.</u>					
` <u> </u>					

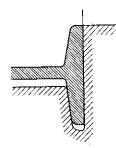
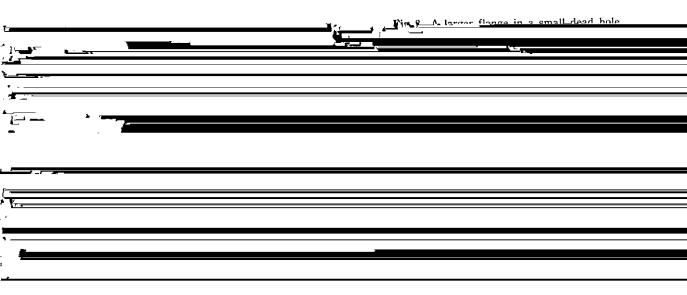



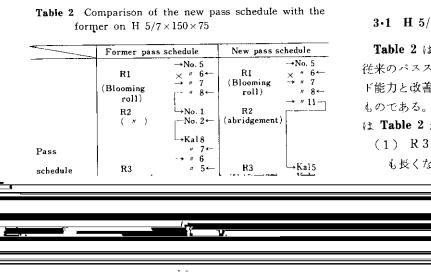
Fig. 7 Excess flange height reduction in live hole

行なえば良好な結果がえられる。

2・3 一般則に関する考察

カリバーロールで最終製品まで成形する従来の I形鋼と異なり,Kal1以後ユニバーサルミルで 再成形するH形鋼のカリバー設計においては,前 述の一般則はかなりの柔軟性を有するものと考え られる。すなわち一般則では開口部でフランジ厚 みを滅じ,フランジ高さを増加させ,閉口部では フランジ高さを殺すのが目的である。開口部でフ ランジ厚さと同時にフランジ高さを滅じ,同様に 閉口部でフランジ高さを殺すと同時にフランジ厚 みを殺してもさしつかえない。

とくにカリバー形状が比較的ずんぐりした初期 のカリバーなら,開口部でのフランジ高さの殺し ミルおよびブルーミングミルなどの前後設備の能 力を考慮し、それらに応じたカリバー数(パス回 数)、カリバー配置を有するようカ リ バー設計を 行なえばよい。したがって圧延能率を優先して考 え、カリバー設計をクッションとするのが正しい と考えられる。


2·4 作業性の考慮

作業性優先の見地よりカリバー設計を行なう際 次の2点の考慮はとくに必要である。

- (1) R関係各スタンドおよび U1 における 標準能力の推定
 - (2) 上記計算により, R1, R2, R3, U1 の各

Elemental	Table 1 Elemental			<u>U1</u>
	Standard (Doulo	+:nn C+1_23 1	<u>n</u>	
<u>`</u>				
	n			
,				
<u>r</u>				
<u>i i i i i i i i i i i i i i i i i i i </u>				

	286		川 崎 製 鉄 技 報		October 1969
) <u>e</u>			<u> у 1<u>84 у</u>п.</u>	Bたいチャッム み としよ、ア	ま.1 オ 対明の
· · · · · · · · · · · · · · · · · · ·					
· —					
han					
- ,					-
Ī	+				
	- {* <u>·</u>				
	·				
. <u>7=</u>					
<u> </u>			_		
Ϋ́ Ϋ́					
• <u> </u>					
, ,					
·					
			?		
- 11-3					
·]	p	-			
÷					7.7
	(

3・1 H 5/7×150×75の改善例

Table 2 は H 5/7×150×75について 従来のパススケジュールおよび各スタン ド能力と改善後のそれらの比較を示した ものである。従来のパススケジュールで は Table 2 からあきらかなように (1) R 3 での圧延所要時間がもっと

も長くなっており,したがって R3

<u> </u>

H形鋼カリバー設計における一考察

_ ____ とした。 New このようにしてパススケジュールの改 Product Former <u>業</u>れ伝わり - 1111年の上記もつ ----G Ì ...k ł 54 L' - • • -<u>له تا او کالا او ا</u> <u>t</u> ____ Ŧ 1 μ. .